Большая советская энциклопедия (БСЭ)
Статьи на букву "М" (часть 4, "МАГ")

В начало энциклопедии

По первой букве
0-9 A-Z А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я
Предыдущая страница Следующая страница

Статьи на букву "М" (часть 4, "МАГ")

Магнитная проницаемость

Магнитная проницаемость - физическая величина, характеризующая связь между магнитной индукцией В и магнитным полем Н в веществе. Обозначается μ, у изотропных веществ μ= В/Н (в СГС системе единиц (См. СГС система единиц)) или μ= В/μ0Н (в Международной системе единиц (См. Международная система единиц) СИ, μо - Магнитная постоянная).

У анизотропных тел (кристаллов) М. п. - Тензор. М. п. связана с магнитной восприимчивостью c соотношением m = 1 + 4pc (в СГС системе единиц) или m = 1 +c (в ед. СИ), m измеряется в безразмерных единицах. Для физич. Вакуума c = 0 и m= 1.

У Диамагнетиков c<0 и m < 1, у Парамагнетиков и ферромагнетиков (См. Ферромагнетики) c>0 и m > 1. В зависимости от того, измеряется ли m ферромагнетиков в статическом или переменном магнитном поле, её называют соответственно статической или динамической М. п. Значения этих М. п. не совпадают, так как на намагничивание ферромагнетиков в переменных полях влияют Вихревые токи, Магнитная вязкость и резонансные явления. М. п. ферромагнетиков сложно зависит от Н, для описания этой зависимости вводят понятия дифференциальной, начальной и максимальной М. п. (см. Магнитная восприимчивость).

Лит.: Вонсовский С. В., Магнетизм, М., 1971.

С. В. Вонсовский.

Магнитная разведка

Статья большая, находится на отдельной странице.

Магнитная структура

Статья большая, находится на отдельной странице.

Магнитная съёмка

Магнитная съёмка - систематические измерения элементов земного магнетизма (См. Земной магнетизм) и составление по данным измерений магнитных карт (См. Магнитные карты). Различают общую и детальную М. с. Общая М. с., осуществляемая на больших площадях при сравнительно редкой сети пунктов измерения (отстоящих на десятки и сотни км), позволяет изучить основные закономерности распределения геомагнитного поля. Карты, составленные на основе общей М. с., необходимы для морской и воздушной навигации, обнаружения значительных магнитных аномалий (См. Магнитные аномалии), изучения векового хода элементов земного магнетизма. Детальная М. с. с расстоянием между пунктами (маршрутами) измерений от 1 м до нескольких км служит главным образом для геологического картирования и поиска рудных месторождений (см. Магнитная разведка).

При М. с. обычно измеряют модуль вектора полной напряжённости геомагнитного поля, однако для целей геологической разведки часто ограничиваются относительным определением вертикальной составляющей геомагнитного поля. М. с. осуществляют различного типа Магнитометрами, устанавливаемыми на спутниках, самолётах (см. Аэромагнитная съёмка), немагнитных судах и наземных видах транспорта. Непрерывные наблюдения за изменениями геомагнитного поля с течением времени (за вековым ходом поля) проводятся сетью магнитных обсерваторий (См. Магнитные обсерватории).

Лит.: Яновский Б. М., Земной магнетизм, [3 изд.], т. 1, Л., 1964.

Магнитная текстура

Магнитная текстура - см. Текстура магнитная.

Магнитная термометрия

Магнитная термометрия - метод измерения температур, применяемый в основном ниже 1 К. В М. т. термометрическим свойством служит магнитная восприимчивость χ парамагнетика. Для М. т. подбирают парамагнетики, у которых χ простейшим образом зависит от температуры: χ = С / Т (см. Кюри закон). По измеренному в слабом внешнем магнитном поле значению χ и известной для данного парамагнетика постоянной Кюри C может быть определена так называемая магнитная температура Т*. В области температур, в которой выполняется закон Кюри, Т* совпадает с термодинамической температурой Т. При понижении температуры закон Кюри перестаёт быть точным и Т* может заметно отличаться от Т. Практически магнитную температуру переводят в термодинамическую по таблицам и кривым, составленным на основании тщательных исследований зависимости восприимчивости χ парамагнитных солей от температуры (см. Магнитное охлаждение).

Лит.: Физика низких температур, перевод с английского, под общей редакцией А. И. Шальникова, М., 1959, гл. 7; Мендельсон К., На пути к абсолютному нулю, перевод с английского, М., 1971.

Магнитная тонкая плёнка

Статья большая, находится на отдельной странице.

Магнитная цепь

Магнитная цепь - последовательность Магнетиков, по которым проходит магнитный поток. Понятием М. ц. широко пользуются при расчётах электрических машин, трансформаторов, постоянных магнитов, электромагнитов, реле, магнитных усилителей, электроизмерительных и других приборов. В технике распространены как М. ц., в которых магнитный поток практически полностью проходит в ферромагнитных телах (замкнутые М. ц.), так и М. ц., включающие помимо ферромагнетиков, диамагнитные среды (например, воздушные зазоры). Если магнитный поток возбуждается в М. ц. постоянными магнитами, то такую цепь называют поляризованной. М. ц. без постоянных магнитов называют нейтральной, магнитный поток в ней возбуждается током, протекающим в обмотках, охватывающих часть или всю М. ц. В зависимости от характера тока возбуждения различают М. ц. постоянного, переменного и импульсного магнитных потоков. Вследствие полной формальной аналогии электрических и магнитных цепей к ним применим общий математический аппарат. Например, для М. ц. аналогом Ома закона служит формула F = Ф · Rm, где Ф - Магнитный поток, Rm - Магнитное сопротивление, F - Магнитодвижущая сила. К М. ц. применимы Кирхгофа правила и т.д. Существует, однако, и принципиальное различие между М. ц. и электрической цепью: в М. ц. с неизменным во времени потоком Ф не выделяется Джоулево тепло (см. Джоуля - Ленца закон), то есть нет рассеяния электромагнитной энергии.

Лит.: Калашников С. Г., Электричество, М., 1956 (Общий курс физики, т. 2); Поливанов К. М., Ферромагнетики, М. - Л., 1957.

Магнитное насыщение

Магнитное насыщение - состояние парамагнетика или ферромагнетика, при котором его Намагниченность J достигает предельного значения J - намагниченности насыщения, не меняющейся при дальнейшем увеличении напряжённости намагничивающего поля. В случае ферромагнетиков J достигается при окончании процессов так называемого технического намагничивания: а) роста доменов (См. Домены) с магнитным моментом, ориентированным по оси лёгкого намагничивания (См. Ось лёгкого намагничивания), в результате процесса смещения границ доменов; б) поворота вектора намагниченности образца в направлении намагничивающего поля (так называемого процесса вращения); и Парапроцесса - увеличения под действием сильного внешнего поля числа Спинов, ориентированных по полю, за счёт спинов, имеющих антипараллельную ориентацию. На практике обычно получают техническое М. н. (при 20 °С в полях от нескольких э до Магнитное насыщение 104 э), так как для осуществления парапроцесса (вдали от Кюри точки (См. Кюри точка)) требуются очень сильные поля. В случае парамагнетиков состояние, близкое к М. н., достигается в полях Магнитное насыщение 10 кэ (Магнитное насыщение 103 ка/м) при температурах Магнитное насыщение 1К.

Лит.: Киренский Л. В., Магнетизм, 2 изд., М., 1967; Вонсовский С. В., Магнетизм, М., 1971.

Магнитное обогащение

Статья большая, находится на отдельной странице.

Магнитное охлаждение

Статья большая, находится на отдельной странице.

Магнитное поле

Статья большая, находится на отдельной странице.

Магнитное поле Земли

Магнитное поле Земли - см. в статье Земной магнетизм.

Магнитное последействие

Магнитное последействие - то же, что Магнитная вязкость.

Магнитное сопротивление

Магнитное сопротивление - характеристика магнитной цепи (См. Магнитная цепь), М. с. Rm равно отношению магнитодвижущей силы (См. Магнитодвижущая сила) F, действующей в магнитной цепи, к созданному в цепи магнитному потоку (См. Магнитный поток) Ф. М. с. однородного участка магнитной цепи может быть вычислено по формуле Rm = l / μμ0S, где l и S - длина и поперечное сечение участка магнитной цепи, μ - относительная Магнитная проницаемость материала цепи, μ0 - Магнитная постоянная. В случае неоднородной магнитной цепи (состоящей из однородных последовательных участков с различными l, S, μ) её М. с. равно сумме Rm однородных участков. Расчёт М. с. по приведённой формуле является приближённым, так как формула не учитывает: «магнитные утечки» (рассеяние магнитного потока в окружающем цепь пространстве), неоднородности магнитного поля в цепи, нелинейную зависимость М. с. от поля. В переменном магнитном поле М. с. - комплексная величина, так как в этом случае и зависит от частоты электромагнитных колебаний. Единицей М. с. в Международной системе единиц (См. Международная система единиц) служит Ампер (или ампер-виток) на Вебер (а/вб), в СГС системе единиц (См. СГС система единиц) - Гильберт на Максвелл (гб/мкс). 1 а/вб = 4π·10-9 гб/мксм ≈ 1,2566·10-8 гб/мкс.

Магнитное старение

Магнитное старение - см. Старение магнитное.

Магнитно-жёсткие материалы

Магнитно-жёсткие материалы - то же, что Магнитно-твёрдые материалы.

Магнитно-мягкие материалы

Статья большая, находится на отдельной странице.

Магнитно-твёрдые материалы

Статья большая, находится на отдельной странице.

Магнитно-твёрдые сплавы

Магнитно-твёрдые сплавы - основной вид магнитно-твёрдых материалов (См. Магнитно-твёрдые материалы).

Магнитные аномалии

Магнитные аномалии - отклонение значений магнитного поля на поверхности Земли от его нормальных значений, то есть значений, которые характеризуют геомагнитное поле на территории, существенно превышающей территорию распространения М. а. На картах М а. изображаются с помощью линий, соединяющих точки с одинаковым значением какого-либо из элементов земного магнетизма (склонения - изогоны, наклонения - изоклины, напряжённости одной из составляющих или полного вектора - изодинамы).

По величине охватываемой территории М. а. делятся на континентальные, региональные и локальные. Континентальные М. а. распространяются на площадь 10-100 тысяч км2. Для них нормальным полем является поле однородно намагниченного шара (поле диполя). По современным представлениям, они связаны с особенностями движения вещества в ядре Земли, то есть входят в главное геомагнитное поле. Наиболее крупные континентальные М. а. известны в Восточной Сибири и в районе Зондских островов. Региональные М. а., охватывающие площадь 1-10 тысяч км2, вызываются особенностями строения земной коры (главным образом кристаллического фундамента) и выделяются на фоне главного геомагнитного поля (поле диполя + континент. М. а.) (известны на Сибирской, Восточно-Европейской платформах и в других районах), Локальные М. а. охватывают территорию от нескольких м2 до сотен км2, вызываются неоднородностью строения верхних частей земной коры или особенностями намагниченности горных пород (например, вследствие удара молнии). Часто локальные М. а. связаны с залежами полезных ископаемых, поэтому их изучение с помощью магнитной разведки имеет большое практическое значение. Наиболее интенсивные М. а. наблюдаются в области залегания железных руд и других железосодержащих пород (например, Криворожская и Курская М. а. определяются залежами железистых кварцитов, М. а. в районе горы Магнитной на Урале и горы Кирунавара в Швеции связаны с залежами магнетита).

П. Н. Кропоткин, В. А. Магницкий.

Магнитные бури

Статья большая, находится на отдельной странице.

Магнитные весы

Магнитные весы - приборы, действующие по принципу маятниковых, крутильных или рычажных весов и применяемые для измерения магнитной восприимчивости тел, анизотропии восприимчивости, реже вертикальной и горизонтальной составляющих напряжённости магнитного поля Земли. Восприимчивость магнитного материала определяется по силе, с которой исследуемый образец, имеющий форму длинного цилиндра, втягивается в поле электромагнита (метод Гуи), или по силе, действующей на образец малого размера, помещенный в неоднородное магнитное поле (метод Фарадея). Обычно пользуются нулевым методом измерений (См. Нулевой метод измерений), компенсация силы или момента сил в этом методе осуществляется силой взаимодействия специальных электромагнитов. Градуировку М. в. проводят с помощью стандартных веществ с известной магнитной восприимчивостью, определённой по их кривым намагничивания (См. Намагничивание). На рисунке изображена одна из конструкций рычажных М. в. для измерения магнитной восприимчивости в области низких температур.

Чувствительность таких весов достигает 10-8 н на деление шкалы, погрешность относительных измерений Магнитные весы 1%.

Лит.: Чечерников В. И., Магнитные измерения, 2 изд., М., 1969; Чечурина Е. Н., Приборы для измерения магнитных величин, М., 1969; Селвуд П.; Магнетохимия, перевод с английского, 2 изд., М., 1958; Боровик-Романов А. С., Крейнас Н., Магнитные свойства трёхвалентных ионов европия и самария, «Журнал экспериментальной и теоретической физики», 1955, т. 29, в. 6/12, с. 790.

Схема магнитных весов для измерения восприимчивости в области низких температур: 1 - полюсы электромагнита; 2 - исследуемый образец; 3 - кварцевая нить; 4 - растяжки; 5 - коромысло; 6 и 7 - гайки; 8 - демпфер; 9 и 10 - стержень и катушка компенсационного устройства; 11 - колпак; 12 - сосуд Дьюара.

Схема магнитных весов для измерения восприимчивости в области низких температур: 1 - полюсы электромагнита; 2 - исследуемый образец; 3 - кварцевая нить; 4 - растяжки; 5 - коромысло; 6 и 7 - гайки; 8 - демпфер; 9 и 10 - стержень и катушка компенсационного устройства; 11 - колпак; 12 - сосуд Дьюара.

Магнитные звёзды

Магнитные звёзды - звёзды, на поверхности которых имеются магнитные поля более нескольких сотен гаусс. Впервые магнитные поля звёзд измерены американским астрономом Х. Бабкоком в 1948 по зеемановскому расщеплению линий в спектре звезды (см. Зеемана эффект). Самое сильное из измеренных магнитное поле обнаружено у звезды HD 215441 и равно 34000 гс. Все известные М. з. имеют аномальный химический состав атмосфер - большой избыток редкоземельных элементов (Eu, La и других), избыток элементов группы железа (Fe, Mn, Cr) и более лёгких элементов (Si, Cl, Р и других); по этому признаку они относятся к группе пекулярных А-звёзд. Напряжённость магнитного поля и определяемый по спектру химический состав атмосфер М. з. периодически меняются, что объясняется вращением звёзд, для которых характерно неоднородное распределение по поверхности магнитного поля и химического состава. На Герцшпрунга - Ресселла диаграмме (См. Герцшпрунга - Ресселла диаграмма) М. з. лежат в пределах главной последовательности в области спектральных классов от F0 до B5, составляя около 10% всех звёзд этих классов. Сильное магнитное поле таких звёзд могло возникнуть либо при их образовании (сжатие частично ионизованного газа, имевшего первоначально слабое магнитное поле, приводит к усилению поля), либо путём механизма генерации динамо-процессом во вращающейся звезде (о динамо-процессе см. в статье Земной магнетизм). Происхождение аномалий химического состава не выяснено.

Лит.: Эруптивные звёзды, М., 1970, гл. 7.

В. Л. Хохлова.

Магнитные измерения

Статья большая, находится на отдельной странице.

Магнитные карты

Магнитные карты - карты земной поверхности, на которых при помощи изолиний (изодинам (См. Изодинамы), изогон (См. Изогоны), изоклин (См. Изоклины)) показано распределение напряжённости геомагнитного поля или её составляющих. Наиболее распространены мировые М. к. и карты аномального магнитного поля. Мировые карты отражают основные особенности главного геомагнитного поля (нормального поля), источником которого считают движение электропроводящего вещества земного ядра (см. Земной магнетизм). Размеры структурных особенностей главного поля близки к размерам континентов, поэтому обычный масштаб мировых карт 1: 10 000 000 или мельче. На мировых М. к. сглажены отклонения, обусловленные неоднородностями строения земной коры, залеганием рудных месторождений и другими местными факторами. Карты аномального магнитного поля отражают местные отклонения геомагнитного поля от главного поля. Эти отклонения наблюдаются, как правило, на площадях с линейными размерами порядка десятков км и менее. Поэтому М. к. аномального поля имеют более крупный масштаб (например, 1: 200 000); эти карты обычно составляют по результатам аэромагнитной съёмки (См. Аэромагнитная съёмка). М. к. необходимы для изучения строения земных недр, поиска полезных ископаемых и решения ряда других задач. Вследствие векового хода магнитного поля Земли М. к. стареют, поэтому их периодически, через 5-10 лет, пересоставляют.

Лит.: Яновский Б. М., Земной магнетизм, [3 изд.], т. 1, Л., 1964.

В. Н. Луговенко.

Магнитные линзы

Магнитные линзы - устройства для создания магнитных полей, обладающих определённой симметрией; служат для фокусировки пучков заряженных частиц. Подробнее см. в статье Электронные линзы.

Магнитные ловушки

Статья большая, находится на отдельной странице.

Магнитные материалы

Статья большая, находится на отдельной странице.

Магнитные обсерватории

Магнитные обсерватории - научно-исследовательские учреждения, в которых осуществляется непрерывная регистрация временных изменений (вариаций) магнитного поля Земли и проводятся регулярные измерения абсолютных значений напряжённости геомагнитного поля и его направления (см. Земной магнетизм). М. о. снабжены различного типа Магнитографами и Магнитометрами, их размещают преимущественно вдали от городов, электрифицированных железных дорог и крупных промышленных предприятий, способных исказить геомагнитное поле. Ряд М. о. входит в состав комплексных магнитно-ионосферных станций.

Данные М. о. служат для изучения поведения геомагнитного поля, которое является чутким индикатором сложных процессов, протекающих в магнитосфере, ионосфере и в недрах Земли. Кроме того, их используют при наземной и аэромагнитной съёмке для учёта магнитных вариаций и приведения к одной эпохе результатов измерений, выполненных в разное время. М. о. осуществляют также поверку (См. Поверка) полевых магнитометров, применяемых для разведки полезных ископаемых.

В России к 1829 М. о. были построены в Петербурге и Казани (они были первыми в Европе), затем М. о. были созданы в Нерчинске, Барнауле, Колывани, Екатеринбурге, Тбилиси и др. Первая в мире полярная М. о. открыта в 1924 в проливе Маточкин Шар на Новой Земле. В 1939 на базе магнитного отделения Главной геофизической обсерватории (См. Главная Геофизическая обсерватория) под Москвой организован Институт земного магнетизма (см. Земного магнетизма, ионосферы и распространения радиоволн институт АН СССР). В СССР функционирует более 40 М. о. (1972), в том числе ряд обсерваторий в полярных районах (в Арктике и Антарктике). В мире насчитывается свыше 130 постоянно действующих М. о., в том числе в Вене (Австрия), Нанте (Франция), Ситке (Аляска), Гонолулу (Гавайские острова) и др. Однако распределение их крайне неравномерно: наибольшее количество М. о. приходится на территории Европы, меньше всего на территории океанов и морей. 29 советских и 90 зарубежных М. о. регулярно направляют информацию о состоянии магнитного поля и ионосферы Земли в Международные центры, которые находятся в СССР, США, Дании и Японии.

Лит.: Яновский Б. М., Земной магнетизм, [3 изд.], т. 1, Л., 1964.

Ю. А. Бурцев.

Магнитные чернила

Магнитные чернила - разновидность магнитного носителя информации (См. Носитель информации) для записи текстовых и графических материалов на обыкновенной бумаге и считывания магнитным способом. М. ч. изготавливают в виде суспензии из карбонильного железа и гептана либо в виде мастики с микроскопическими магнитными частицами; часто для облегчения визуального контроля записи в М. ч. добавляют красящие вещества (так называемые видимые М. ч.). Применяются М. ч. главным образом для механизации процессов обработки документов (сортировка, идентификация, учёт, кодирование и др.). М. ч. наносятся вручную либо с помощью печатающего устройства.

Магнитные эталоны

Магнитные эталоны - см. Эталоны магнитные.

Магнитный анизометр

Магнитный анизометр - см. Анизометр магнитный.

Магнитный барабан

Магнитный барабан - Запоминающее устройство ЦВМ, в котором носителем информации является покрытый слоем магнитного материала цилиндр, вращающийся с постоянной угловой скоростью. Цилиндр М. б. (рис.) изготавливают из немагнитных сплавов, в том числе из нержавеющей стали; диаметр цилиндра от 100 до 500 мм, длина от 300 до 700 мм, магнитное покрытие - сплавы Ni - Со, Со - W и др., наносимые гальваническим способом. Магнитная запись и считывание информации производятся с помощью магнитных головок (См. Магнитная головка), которые устанавливают вдоль образующих цилиндра М. б. на расстоянии 15-30 мкм от его поверхности. М. б. относятся к запоминающим устройствам с произвольным обращением, информация размещается на «дорожках» - участках поверхности М. б., расположенных с шагом 0,2-0,8 мм, плотность записи (от 25 до 40 импульсов на 1 мм) в значит, мере зависит от зазора между головками и поверхностью М. б. При зазорах в несколько мкм большое значение имеют тщательная балансировка М. б. и центровка его при установке в подшипниках, а также пыле- и влагоизоляция рабочей поверхности и головок от окружающей среды. Применением «плавающих» головок, которые не крепятся жестко, а «плавают» на воздушной подушке у поверхности М. б., можно уменьшить зазор и увеличить плотность записи, а также снизить требования к точности изготовления и установки М. б.

Количество дорожек на М. б. от десятков до нескольких тысяч, информационная ёмкость от 6·105 до 8·109 бит, среднее время доступа (выборки информации) 2,5-50 мсек, частота вращения М. б. от 500 до 20 000 об/мин. В М. б. небольшой ёмкости головки неподвижны, число их обычно равно числу разрядов машинного слова. Для увеличения плотности записи головки устанавливают с некоторым сдвигом. В М. б. большой ёмкости применяют подвижные головки с автоматическим перемещением; запись ведётся не полным словом, а частями (обычно байтами).

Лит.: Каган Б. М., Адасько В. И., Пурэ Р. Р., Запоминающие устройства большой ёмкости, М., 1968.

Д. П. Брунштейн.

Магнитный барабан: 1 - электродвигатель; 2 - цилиндр (барабан); 3 - магнитные головки; 4 - «дорожки»; 5 - ось магнитного барабана; 6 - станина (корпус).

Магнитный барабан: 1 - электродвигатель; 2 - цилиндр (барабан); 3 - магнитные головки; 4 - «дорожки»; 5 - ось магнитного барабана; 6 - станина (корпус).

Магнитный гистерезис

Магнитный гистерезис - см. в статье Гистерезис.

Магнитный диполь

Магнитный диполь - см. в статье Диполь электрический и магнитный.

Магнитный диск

Статья большая, находится на отдельной странице.

Магнитный заряд

Магнитный заряд - вспомогательное понятие, вводимое при расчётах статических магнитных полей (по аналогии с электрическим зарядом, создающим электростатическое поле). М. з., в отличие от электрических зарядов, реально не существуют, так как магнитное поле не имеет особых источников, помимо электрических токов. Гипотеза П. Дирака (1931) о существовании в природе М. з. (магнитных монополей (См. Магнитный монополь)) экспериментально не подтверждена, хотя попытки обнаружить М. з. продолжаются. Для тел, обладающих Намагниченностью, можно ввести понятия объёмной rm и поверхностной sm плотностей М. з. Первая связана с неоднородным распределением намагниченности по объёму тела, вторая - со скачком нормальной составляющей намагниченности на поверхности магнетика. М. з. располагаются двойными слоями на поверхностях, где происходит скачок нормальной составляющей намагниченности, причём элементарные М. з. противоположных знаков оказываются связанными в магнитные диполи (См. Диполь).

Лит.: Тамм И. Е., Основы теории электричества, 8 изд., М., 1966.

С. В. Вонсовский.

Магнитный листок

Магнитный листок - бесконечно тонкий двойной магнитный слой, образованный магнитными диполями (См. Диполь). Магнитное поле М. л. при определённых условиях эквивалентно полю постоянного электрического тока, текущего по контуру листка (см. Ампера теорема). Эквивалентность М. л. и замкнутого линейного тока используется в электротехнических расчётах.

Магнитный момент

Статья большая, находится на отдельной странице.

Магнитный монополь

Статья большая, находится на отдельной странице.

Магнитный полюс

Магнитный полюс - участок поверхности намагниченного образца (магнита), на котором нормальная составляющая намагниченности (См. Намагниченность) Jn отлична от нуля. Если Магнитный поток в образце и окружающем пространстве изобразить графически с помощью линий индукции магнитного поля, то М. п. будет соответствовать месту пересечения поверхности образца этими линиями (см. рисунок). Обычно участок поверхности, из которого выходят силовые линии, называют северным (N) или положительным М. п., а участок, в который эти линии входят, - южным (S) или отрицательным. Одноимённые М. п. отталкиваются, разноимённые притягиваются. Если следовать аналогии с взаимодействием электрических зарядов, то М. п. можно приписать отличную от нуля поверхностную плотность магнитных зарядов (См. Магнитный заряд) σm = Jn, хотя в действительности магнитных зарядов не существует (см. Магнитный монополь). Отсутствие в природе магнитных зарядов приводит к тому, что линии магнитной индукции не могут прерываться в образце и у намагниченного образца наряду с М. п. одной полярности всегда должен существовать эквивалентный М. п. другой полярности. Для многих технических целей используются магниты и электромагниты с большим числом пар М. п. (например, в электрических машинах постоянного тока).

В учении о земном магнетизме (См. Земной магнетизм) также рассматривают М. п. (см. Полюсы геомагнитные и Полюсы магнитные Земли). Стрелка магнитного компаса своим северным М. п. указывает направление на Северный полюс Земли (точнее, на южный М. п. Земли, который расположен в Северном полушарии), Южным полюсом - направление на Южный полюс (северный М. п. Земли).

Лит.: Вонсовский С. В., Магнетизм, М., 1971; Яновский Б. М., Земной магнетизм, [3 изд.], т. 1, Л., 1964.

Магнитное поле и полюсы (N и S) намагниченного стального стержня. Линиями со стрелками обозначены линии магнитной индукции (линии замыкаются в окружающем стержень пространстве).

Магнитное поле и полюсы (N и S) намагниченного стального стержня. Линиями со стрелками обозначены линии магнитной индукции (линии замыкаются в окружающем стержень пространстве).

Магнитный потенциалометр

Статья большая, находится на отдельной странице.

Магнитный поток

Магнитный поток - поток магнитной индукции, поток Ф вектора магнитной индукции В через какую-либо поверхность. М. п. dФ через малую площадку dS, в пределах которой вектор В можно считать неизменным, выражается произведением величины площадки и проекции Bn вектора на нормаль к этой площадке, то есть dФ = BndS. М. п. Ф через конечную поверхность S определяется интегралом: Ф = Магнитный поток. Для замкнутой поверхности этот интеграл равен нулю, что отражает соленоидальный характер магнитного поля, то есть отсутствие в природе магнитных зарядов (См. Магнитный заряд) - источников магнитного поля. Единица М. п. в Международной системе единиц (См. Международная система единиц) (СИ) - Вебер, в СГС системе единиц (См. СГС система единиц) - Максвелл, 1 вб = 108 мкс.

Магнитный пробой

Магнитный пробой - см. Пробой магнитный.

Магнитный пускатель

Магнитный пускатель - электрический аппарат низкого напряжения, предназначенный для дистанционного управления (пуска, остановки, изменения направления) и защиты асинхронных электродвигателей малой и средней мощности с короткозамкнутым ротором. Существуют М. п. нереверсивные и реверсивные; выпускаются также спец. М. п. для переключения обмоток многоскоростных электроприводов. М. п. состоят из Контактора, кнопочного поста и теплового реле. Контактор М. п., как правило, имеет 3 главные контактные системы (для включения в трёхфазную сеть) и от 1 до 5 блок-контактов. На рисунке представлена схема нереверсивного М. п. переменного тока. При нажатии кнопки «пуск» на обмотку контактора ОР подаётся напряжение, контактор срабатывает, замыкая главные контакты ГК и блок-контакты БК; БК шунтируют контакты нажатой кнопки, что позволяет отпустить её после запуска двигателя. С нажатием кнопки «стоп» цепь питания ОР разрывается и ГК размыкаются. При резком возрастании силы потребляемого тока вследствие перегрузки или неисправности электродвигателя срабатывает тепловое реле ТР и размыкает контакты КТР, включенные в цепь питания ОР. Номинальный ток срабатывания ТР от 0,2 до 200 а. Реверсивные М. п. оборудованы двумя контакторами, сблокированными между собой механически и электрически, при этом во включенном положении может находиться лишь один из контакторов. При поочерёдном включении контакторов переключаются фазы питания и направление вращения электродвигателя изменяется. М. п. общего применения изготовляются на напряжения переменного тока 127, 220, 380 и 500 в; номинальный ток через силовые контакты от 6 до 400 а, номинальный ток блок-контактов 6-10 а. При нормальном режиме работы М. п. допускают 3-5 (иногда до 10) млн. циклов включение - выключение. М. п. могут работать с частотой 150-1200 вкл/ч, а М. п. малой мощности - с частотой до 3000 вкл/ч. Выпускаются М. п. в обыкновенном, защищенном и взрывобезопасном исполнении.

Лит.: Бабиков М. А., Электрические аппараты, ч. 2, М., 1956; Чунихин А. А., Электрические аппараты, М., 1967

В. К. Иванов.

Схема нереверсивного магнитного пускателя: ГК - главные контакты; КТР - контакты теплового реле; ОР - обмотка контактора; ТР - тепловое реле; БК - блок-контакты; КП - кнопочный пульт; ЭД - электродвигатель.

Схема нереверсивного магнитного пускателя: ГК - главные контакты; КТР - контакты теплового реле; ОР - обмотка контактора; ТР - тепловое реле; БК - блок-контакты; КП - кнопочный пульт; ЭД - электродвигатель.

Магнитный резонанс

Статья большая, находится на отдельной странице.

Магнитный усилитель

Статья большая, находится на отдельной странице.

Магнитобиология

Статья большая, находится на отдельной странице.

Магнитогидродинамический генератор

Статья большая, находится на отдельной странице.

Магнитогидродинамический насос

МГД-насос, электромагнитный насос, машина для подачи жидкости, являющейся проводником электричества (например, жидких металлов). М. н. подразделяются на индукционные насосы (См. Индукционный насос) и кондукционные насосы (См. Кондукционный насос).

Магнитогорск

Магнитогорск - город в Челябинской области РСФСР. Расположен у подножия горы Магнитной, на восточном склоне Южного Урала, по обоим берегам реки Урал. Один из крупнейших центров металлургической промышленности СССР. В 1930 проведена железнодорожная линия, связавшая М. со станцией Карталы (на линии Троицк - Орск). Население 379 тысяч человек (1973; 146 тысяч человек в 1939; 311 тысяч человек в 1959). Имеется 3 городских района. Возник в 1929-31 в связи со строительством Магнитогорского металлургического комбината (См. Магнитогорский металлургический комбинат). Важнейшие предприятия (кроме металлургического комбината): заводы калибровочный, крановый, по ремонту горного и металлургического оборудования, метизно-металлургический; развита промышленность стройматериалов, лёгкая и пищевая (швейная и обувная фабрики, молочный завод, мясокомбинат и др.). Город получает газ по газопроводу Средняя Азия - Урал. Строительство М. начиналось на левом берегу реки Урал, где был создан проспект Пушкина с гостиницей (1929), зданием горкома КПСС (1934, архитектор П. И. Бронников), Дворцом металлургов (1936, архитекторы П. И. Бронников, М. Куповской). Жилая застройка - замкнутые кварталы вдоль магистралей и регулярно распланированные посёлки с индивидуальными жилыми домами. С 1945 застраивается правый берег (генеральный план 1940 переработан в 1945 - 48 институтом «Ленгипрогор», архитекторы Ю. М. Киловатов и другие, проект детальной планировки - архитекторы Л. О. Бумажный и другие), связанный с левым тремя магистралями с мостами-дамбами через водохранилище (на реке Урал), которому параллельны главные улицы Правобережья. В его центре - площадь, связанная лучевыми улицами (главная - проспект Металлургов) с парком. Вначале создавались небольшие и замкнутые жилые кварталы с малоэтажной застройкой, после 1953 - микрорайоны с домами в 4-5 этажей. Построены Дом Советов, театр, концертный зал, новый Дворец металлургов, стадион.

В М. - горно-металлургический и педагогический институты, 8 средних специальных учебных заведений, драматический и кукольный театры, краеведческий музей.

28 января 1971 город награжден орденом Трудового Красного Знамени.

Лит.: Сержантов В. Г., Магнитогорск, Челябинск, 1955; Казаринова В. И., Павличенков В. И., Магнитогорск, М., 1961; Из истории Магнитогорского металлургического комбината и города Магнитогорска. (1929-1941). Сборник документов и материалов, Челябинск, 1965; Магнитка. Краткий исторический очерк, Челябинск, 1971.

Новые жилые дома на проспекте К. Маркса.

Новые жилые дома на проспекте К. Маркса.

Магнитогорский металлургический комбинат

Магнитогорский металлургический комбинат - имени В. И. Ленина, крупнейшее в СССР и одно из самых крупных в мире предприятий чёрной металлургии в городе Магнитогорске Челябинской области РСФСР. Начал строиться в 1929 у подножия горы Магнитной как составная часть угольно-металлургической базы на востоке - Урало-Кузбасса. 15 мая 1931 вступил в строй рудник, 31 января 1932 задута первая доменная печь, 8 июля 1933 пущена первая мартеновская печь, 28 июля 1933 вступил в строй блюминг, в ноябре 1933 - непрерывно-заготовочный стан, в августе 1934 - крупносортный прокатный стан 500. 11 апреля 1970 комбинату присвоено имя В. И. Ленина. Основная железорудная база комбината - гора Магнитная и Соколовско-Сарбайский горно-обогатительный комбинат (Кустанайская область Казахская ССР). В состав комбината входят горнорудное производство, коксохимический цех, агломерационные фабрики, доменный и мартеновские цехи, обжимные, сортопрокатные и листовые станы горячей прокатки, цехи по производству холоднокатаного стального листа, белой жести, оцинкованного листа, эмалированной и оцинкованной посуды, огнеупоров, вспомогательные цехи. За 1946-70 производство чугуна возросло в 3,8 раза, стали в 4,3 раза и проката в 4,5 раза. За годы существования комбинат произвёл (на декабрь 1971) 173,4 млн т чугуна, 217,4 млн. т стали, 170,8 млн. т проката. Удельный вес продукции комбината в производстве чёрных металлов в СССР в 1971 составил по чугуну 11%, стали - 10,6%, прокату - 10,5%. М. м. к. - одно из самых рентабельных предприятий отрасли. Награжден 2 орденами Ленина (1943 и 1971) и орденом Трудового Красного Знамени (1945).

Лит.: Петров Ю., Магнитка, М., 1971.

М. Е. Чурилин.

Магнитограф

Статья большая, находится на отдельной странице.

Предыдущая страница Следующая страница