Энциклопедический словарь (2009)
АЗОТ

В начало словаря

По первой букве
0-9 A-Z А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я

АЗОТ

АЗО́Т -а; м. [франц. azote от греч. an- не-, без- и zōtikos - дающий жизнь]. Химический элемент (N), газ без цвета и запаха, не поддерживающий дыхания и горения (составляет основную по объёму и массе часть воздуха, является одним из главных элементов питания растений).

Азо́тный, -ая, -ое. А-ая кислота. А-ые удобрения. Азо́тистый, -ая, -ое. А-ая кислота.

* * *

азо́т (лат. Nitrogenium), химический элемент V группы периодической системы. Название от греч. а... - отрицательная приставка, и zōē - жизнь (не поддерживает дыхания и горения). Свободный азот состоит из 2-атомных молекул (N2); газ без цвета и запаха; плотность 1,25 г/л, tпл -210ºC, tкип -195,8ºC. Химически весьма инертен, однако реагирует с комплексными соединениями переходных металлов. Основной компонент воздуха (78,09% объёма), разделением которого получают промышленный азот (более 3/4 идёт на синтез аммиака). Применяется как инертная среда для многих технологических процессов; жидкий азот - хладагент. Азот - один из основных биогенных элементов, входящий в состав белков и нуклеиновых кислот. Азот.

* * *

АЗОТ - АЗО́Т (лат. Nitrogenium - рождающий селитры), N (читается «эн»), химический элемент второго периода VA группы периодической системы, атомный номер 7, атомная масса 14,0067. В свободном виде - газ без цвета, запаха и вкуса, плохо растворим в воде. Состоит из двухатомных молекул N2, обладающих высокой прочностью. Относится к неметаллам.

Природный азот состоит из стабильных нуклидов (см. НУКЛИД) 14N (содержание в смеси 99,635% по массе) и 15N. Конфигурация внешнего электронного слоя 2s23. Радиус нейтрального атома азота 0,074 нм, радиус ионов: N3- - 0,132 , N3+ - 0,030 и N5+ - 0,027 нм. Энергии последовательной ионизации нейтрального атома азота равны, соответственно, 14,53, 29,60, 47,45, 77,47 и 97,89 эВ. По шкале Полинга электроотрицательность азота 3,05.

История открытия

Открыт в 1772 шотландским ученым Д. Резерфордом в составе продуктов сжигания угля, серы и фосфора как газ, непригодный для дыхания и горения («удушливый воздух») и в отличие от CO2 не поглощаемый раствором щелочи. Вскоре французский химик А. Л. Лавуазье (см. ЛАВУАЗЬЕ Антуан Лоран) пришел к выводу, что «удушливый» газ входит в состав атмосферного воздуха, и предложил для него название «azote» (от греч. azoos - безжизненный). В 1784 английский физик и химик Г. Кавендиш (см. КАВЕНДИШ Генри) установил присутствие азота в селитре (отсюда латинское название азота, предложенное в 1790 французским химиком Ж. Шанталем).

Нахождение в природе

В природе свободный (молекулярный) азот входит в состав атмосферного воздуха (в воздухе 78,09% по объему и 75,6% по массе азота), а в связанном виде - в состав двух селитр: натриевой NaNO3 (встречается в Чили, отсюда название чилийская селитра (см. ЧИЛИЙСКАЯ СЕЛИТРА)) и калиевой KNO3 (встречается в Индии, отсюда название индийская селитра) - и ряда других соединений. По распространенности в земной коре азот занимает 17-е место, на его долю приходится 0,0019% земной коры по массе. Несмотря на свое название, азот присутствует во всех живых организмах (1-3% на сухую массу), являясь важнейшим биогенным элементом (см. БИОГЕННЫЕ ЭЛЕМЕНТЫ). Он входит в состав молекул белков, нуклеиновых кислот, коферментов, гемоглобина, хлорофилла и многих других биологически активных веществ. Некоторые, так называемые азотфиксирующие, микроорганизмы способны усваивать молекулярный азот воздуха, переводя его в соединения, доступные для использования другими организмами (см. Азотфиксация (см. АЗОТФИКСАЦИЯ)). Превращения соединений азота в живых клетках - важнейшая часть обмена веществ у всех организмов.

Получение

В промышленности азот получают из воздуха. Для этого воздух сначала охлаждают, сжижают, а жидкий воздух подвергают перегонке (дистилляции). Температура кипения азота немного ниже (-195,8 °C), чем другого компонента воздуха - кислорода (-182,9 °C), поэтому при осторожном нагревании жидкого воздуха азот испаряется первым. Потребителям газообразный азот поставляют в сжатом виде (150 атм. или 15 МПа) в черных баллонах, имеющих желтую надпись «азот». Хранят жидкий азот в сосудах Дьюара (см. ДЬЮАРА СОСУД).

В лаборатории чистый («химический») азот получают, добавляя при нагревании насыщенный раствор хлорида аммония NH4Cl к твердому нитриту натрия NaNO2:

NaNO2 + NH4Cl = NaCl + N2 + 2H2O.

Можно также нагревать твердый нитрит аммония:

NH4NO2 = N2 + 2H2O.

Физические и химические свойства

Плотность газообразного азота при 0 °C 1,25046 г/дм3, жидкого азота (при температуре кипения) - 0,808 кг/дм3. Газообразный азот при нормальном давлении при температуре -195,8 °C переходит в бесцветную жидкость, а при температуре -210,0 °C - в белое твердое вещество. В твердом состоянии существует в виде двух полиморфных модификаций: ниже -237,54 °C устойчива форма с кубической решеткой, выше - с гексагональной.

Критическая температура азота -146,95 °C, критическое давление 3,9МПа, тройная точка лежит при температуре -210,0 °C и давлении 125,03 гПа, из чего следует, что азот при комнатной температуре ни при каком, даже очень высоком давлении, нельзя превратить в жидкость.

Теплота испарения жидкого азота 199,3 кДж/кг (при температуре кипения), теплота плавления азота 25,5 кДж/кг (при температуре -210 °C).

Энергия связи атомов в молекуле N2 очень велика и составляет 941,6 кДж/моль. Расстояние между центрами атомов в молекуле 0,110 нм. Это свидетельствует о том, что связь между атомами азота тройная. Высокая прочность молекулы N2 может быть объяснена в рамках метода молекулярных орбиталей. Энергетическая схема заполнения молекулярных орбиталей в молекуле N2 показывает, что электронами в ней заполнены только связывающие s- и p-орбитали. Молекула азота немагнитна (диамагнитна).

Из-за высокой прочности молекулы N2процессы разложения различных соединений азота (в том числе и печально знаменитого взрывчатого вещества гексогена (см. ГЕКСОГЕН)) при нагревании, ударах и т. д. приводят к образованию молекул N2. Так как объем образовавшегося газа значительно больше, чем объем исходного взрывчатого вещества, гремит взрыв.

Химически азот довольно инертен и при комнатной температуре реагирует только с металлом литием (см. ЛИТИЙ) с образованием твердого нитрида лития Li3N. В соединениях проявляет различные степени окисления (от -3 до +5). С водородом образует аммиак (см. АММИАК) NH3. Косвенным путем (не из простых веществ) получают гидразин (см. ГИДРАЗИН) N2H4 и азотистоводородную кислоту HN3. Соли этой кислоты - азиды (см. АЗИДЫ). Азид свинца Pb(N3)2 разлагается при ударе, поэтому его используют как детонатор, например, в капсюлях патронов.

Известно несколько оксидов азота (см. АЗОТА ОКСИДЫ). С галогенами азот непосредственно не реагирует, косвенными путями получены NF3, NCl3, NBr3 и NI3, а также несколько оксигалогенидов (соединений, в состав которых, кроме азота, входят атомы и галогена, и кислорода, например, NOF3).

Галогениды азота неустойчивы и легко разлагаются при нагревании (некоторые - при хранении) на простые вещества. Так, NI3 выпадает в осадок при сливании водных растворов аммиака и иодной настойки. Уже при легком сотрясении сухой NI3 взрывается:

2NI3 = N2 + 3I2.

Азот не реагирует с серой, углеродом, фосфором, кремнием и некоторыми другими неметаллами.

При нагревании азот реагирует с магнием и щелочноземельными металлами, при этом возникают солеобразные нитриды общей формулы М3N2, которые разлагаются водой с образованием соответствующих гидроксидов и аммиака, например:

Са3N2 + 6H2O = 3Ca(OH)2 + 2NH3.

Аналогично ведут себя и нитриды щелочных металлов. Взаимодействие азота с переходными металлами приводит к образованию твердых металлоподобных нитридов различного состава. Например, при взаимодействии железа и азота образуются нитриды железа состава Fe2N и Fe4N. При нагревании азота с ацетиленом C2H2 может быть получен цианистый водород HCN.

Из сложных неорганических соединений азота наибольшее значение имеют азотная кислота (см. АЗОТНАЯ КИСЛОТА) HNO3, ее соли нитраты (см. НИТРАТЫ), а также азотистая кислота HNO2 и ее соли нитриты (см. НИТРИТЫ).

Применение

В промышленности газ азот используют главным образом для получения аммиака (см. АММИАК). Как химически инертный газ азот применяют для обеспечения инертной среды в различных химических и металлургических процессах, при перекачке горючих жидкостей. Жидкий азот широко используют как хладагент (см. ХЛАДАГЕНТ), его применяют в медицине, особенно в косметологии. Важное значение в поддержании плодородия почв имеют азотные минеральные удобрения (см. МИНЕРАЛЬНЫЕ УДОБРЕНИЯ).

В начало словаря